• Homepage
  • >
  • Technology
  • >
  • Foundations of Computational Mathematics – User-Friendly Tail Bounds for Sums of Random Matrices

Foundations of Computational Mathematics – User-Friendly Tail Bounds for Sums of Random Matrices

Foundations of Computational Mathematics - User-Friendly Tail Bounds for Sums of Random Matrices

From the journal, Foundations of Computational Mathematics, comes a paper on User-Friendly Tail Bounds for Sums of Random Matrices. This paper is free to read (link) through September 2019.

Abstract

This paper presents new probability inequalities for sums of independent, random, self-adjoint matrices. These results place simple and easily verifiable hypotheses on the summands, and they deliver strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for the norm of a sum of random rectangular matrices follow as an immediate corollary. The proof techniques also yield some information about matrix-valued martingales.

In other words, this paper provides noncommutative generalizations of the classical bounds associated with the names Azuma, Bennett, Bernstein, Chernoff, Hoeffding, and McDiarmid. The matrix inequalities promise the same diversity of application, ease of use, and strength of conclusion that have made the scalar inequalities so valuable.

Advertisements
Avatar

  Founder and Managing Director for fullSTEAMahead365.

  • facebook
  • twitter
  • linkedIn
  • tumblr
  • youtube
  • instagram

Leave a Reply

Advertisements
Scroll Up